admin 发布:2024-11-10 10:14 5
本文摘要: 黑洞是怎么形成的?相信这个问题是许多玩家想要了解的,那么下面小编就来和大家仔细说一说,感兴趣的您赶紧往下了解吧。
黑洞是怎么形成的?相信这个问题是许多玩家想要了解的,那么下面小编就来和大家仔细说一说,感兴趣的您赶紧往下了解吧。
经过天文学家研究,对黑洞的来源有3种看法:一是恒星在其晚年核燃料全部耗尽,星体在其自身引力作用下开始收缩凹陷,如果收留凹陷物质的质量大于太阳质量的3倍,那么收缩凹陷的产物便是黑洞;二是星系或球状星团的中心部分恒星很密集,星体之间容易发生大规模的碰撞,由此产生超大质量的天体坍缩后,便可以形成质量超过太阳1亿倍的黑洞;三是根据大爆炸的宇宙模型推断,大爆炸的巨大力量会把一些物质挤压得极其紧密,于是形成了“原生黑洞”。
天文学家还列举了许多星体轨道畸变的事实,以确认黑洞的存在。但是,尽管天文学家都认定黑洞的存在,但没有一个人找到一个黑洞。因此,黑洞是否存在,至今还是个谜。
“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。
根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。
等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。
那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。
我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。
质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。
这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。
与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。
在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。
更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背!
“黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。
黑洞其实是具有很大能量的恒星死亡后出现的天体,只要宇宙有恒星就有机会出现黑洞。对于黑洞我们还是很陌生的,甚至有人觉得黑洞就是无中生有出现的;黑洞并非是无中生有,其实它的前身就是一颗具有很大能量的恒星,只可惜到了终结的时候就发展成为了黑得让人惊讶的黑洞而已。据了解其实黑洞也并不是完全只会吞噬的星体,其实也存在为星系提供能量的特别存在。
一、黑洞其实是恒星终究的模式,一个能量很大的恒星终结后就会演变成为黑洞
二、太阳是不会成为黑洞的,毕竟太阳的能量并不足够让它变成恐怖的黑洞
那么,太阳系也会出现黑洞吗?不会。根据专家的研究发现,其实黑洞形成所需要的能量是很大的,太阳虽然是太阳系的中心,也是能量的来源,但按照太阳的发展即使是毁灭也只会变回白矮星。黑洞形成的恒星,其实原来的能量绝对是太阳能力的好几倍,因此太阳即使毁灭也不会直接变成黑洞的,毕竟它的能量并不多,而且宇宙中跟太阳相仿能量的星体也很多,但黑洞却只有少数量。
黑洞是恒星毁灭的最后阶段,恒星的死亡黑洞就会出现。
跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。
当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。
质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。
根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。
拓展资料:
黑洞是现代广义相对论中,宇宙空间内存在的一种天体。黑洞的引力很大,使得视界内的逃逸速度大于光速。
1916年,德国天文学家卡尔·史瓦西(Karl Schwarzschild)通过计算得到了爱因斯坦引力场方程的一个真空解,这个解表明,如果将大量物质集中于空间一点,其周围会产生奇异的现象,即在质点周围存在一个界面——“视界”一旦进入这个界面,即使光也无法逃脱。这种“不可思议的天体”被美国物理学家约翰·阿奇博尔德·惠勒(John Archibald Wheeler)命名为“黑洞”。
“黑洞是时空曲率大到光都无法从其事件视界逃脱的天体”。
黑洞无法直接观测,但可以借由间接方式得知其存在与质量,并且观测到它对其他事物的影响。借由物体被吸入之前的因高热而放出和γ射线的“边缘讯息”,可以获取黑洞存在的讯息。推测出黑洞的存在也可借由间接观测恒星或星际云气团绕行轨迹取得位置以及质量。
2017年12月7日,美国卡耐基科学研究所科学家发现有史以来最遥远的超大质量黑洞,其质量是太阳的8亿倍。
黑洞的形成是恒星在灭亡的时候,由于自身重力开始收缩、爆炸,发生聚变,同时压缩了内部的空间和时间。由于高质量而产生的引力,恒星核心就会开始吸入靠近它的任何物体,而光也无法向外射出,黑洞因此诞生。
黑洞无法直接观测,但可以借由间接方式得知其存在与质量,并且观测到它对其他事物的影响。借由物体被吸入之前的因黑洞引力带来的加速度导致的摩擦而放出x射线和γ射线的“边缘讯息”,可以获取黑洞存在的讯息。
推测出黑洞的存在也可借由间接观测恒星或星际云气团绕行轨迹来得出,还可以取得其位置以及质量。
扩展资料:
在地球上,由于引力场作用很小,时空的扭曲是微乎其微的。而在黑洞周围,时空的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。
有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的“侧面”、甚至“后背”,这是宇宙中的“引力透镜”效应。
宇宙中可不仅仅只是存在着无数的星球,小行星,彗星等,同时还有很多看不到摸不着的物质,就比如黑洞这种灵所有星球都感到恐惧的存在,也还有许多至今为止科学家也没发现的物质,而黑洞的形成其实与中子星的产生过程很相似,我们今天就来好好说一说。
首先我们来说说黑洞这种物质,这是一种拥有非常强大吞噬力的存在,体积越大吞噬力越大,星球啥的都可以吞噬,就好比一个无底洞,目前虽然看不到它的存在,但是可以确定没一个星系的正中心都有一个超级黑洞的存在,这是为了给所有的星球提供一个强大的引力,保证它们的正常轨道运行不会碰撞等;当然黑洞的吞噬力其实也是有很多作用的,可以吞噬掉宇宙的垃圾,减少宇宙发生意外事故的发生,不然估计每天每时每刻都在发生着宇宙中星球碰撞等事件。
甚至霍金关于人类穿越中还猜想黑洞很可能是人类成功实现穿越的媒介,只不过实在是太危险了,而其实这个黑洞的形成和中子星的产生是非常相似的,当宇宙中一个星球发生快灭亡的准备时,它的核心就会开始发生很快的收缩,慢慢地积累最后就会导致爆炸,这也是“大爆炸学说”的起源,宇宙中每一刻都会发生着这一的事。
而星球的核心根据科学的观察发现里面的物质都成为中子后就会在一个很短的时间内压缩成一个非常紧密的形体,这里就已经具有很大的能量了,而星球爆炸后,这些形体可不会破碎依旧还是存在的,然后因为它本身的质量非常地大就会具有非常大的吸引力,将四周的物体都吸入进去,也就形成了黑洞。
版权说明:如非注明,本站文章均为 宝珍游戏库 原创,转载请注明出处和附带本文链接;